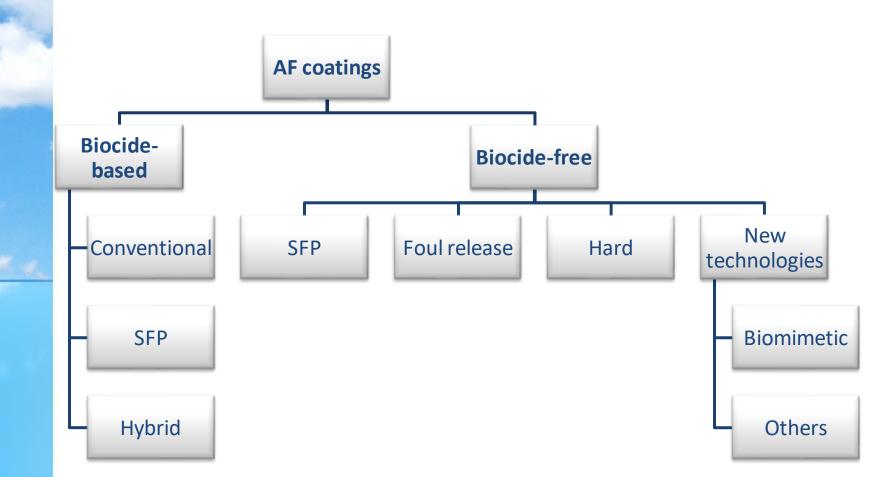


LEGISLATIVE CONTEXT

International Regulations:

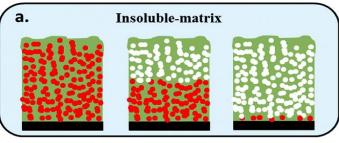

 IMO International Convention (2001) - in full force since 1 January 2008

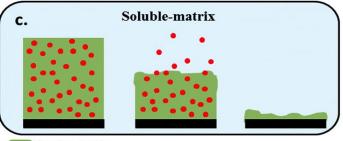
European Policies:

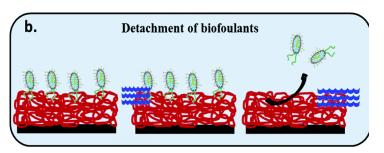
- Reg.(EC) No 782/2003; Reg. 536/2008/EC
- BPR Reg. (EU) 528/2012
- Water Framework Directive (WFD) 2013/39/EU

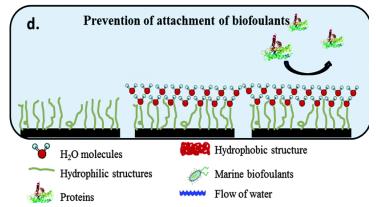
PROACTIVE ANTIFOULING SYSTEMS

Proactive systems prevent or clean new fouling and slime


MAIN ANTIFOULING COATINGS


Biocide-based





- Coating matrix
- Pigments
- **Moles**

ANTIFOULING RESTRICTIONS AND BANS

TBT ban

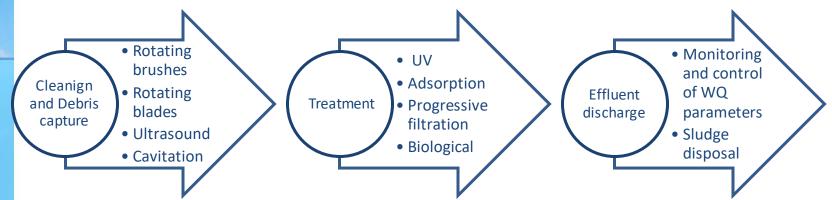
Asia: Some SA countries have not ratified IMO convention (Hong Kong, Thailand, Philippines, Cambodia, Laos, Myanmar, Taiwan and Brunei.)
Only few local restrictions exist.

Rest of the world: 79 countries ban the use TBT on boats with the country flag and boats accessing their harbours and ports

Copper restrictions

Copper based AFPs are allowed in most of the world without restrictions including USA, South America, Europe and Asian countries. However some restrictions are in place in some countries:

Scandinavia and The Netherlands:


- Maximum content of copper for usage in leisure boats
- Only certain copper biocides are allowed: Copper (I) oxide and copper thiocyanate
- Initiatives to ban copper.

ANTIFOULING SYSTEMS

Reactive react and clean macrofouling where prevention hasn't worked:

- Traditional dry docking cleaning
- In-water hull cleaning systems:

Environmental Impact

Main chemical release

- Cu and Zn other heavy metals (Pb, Ni, Sn, Fe, Al)
- Organic compounds, polymer backbones, solvent residue, etc.
- Biofouling

Speciation and Toxicity

- Cu⁺ Cu²⁺, inorganic and organic Sluggmalexations, etc.
- •importablex kinetics
- •Will depend on the Lab vs real complex environmental specifics of the system conditions

Fate

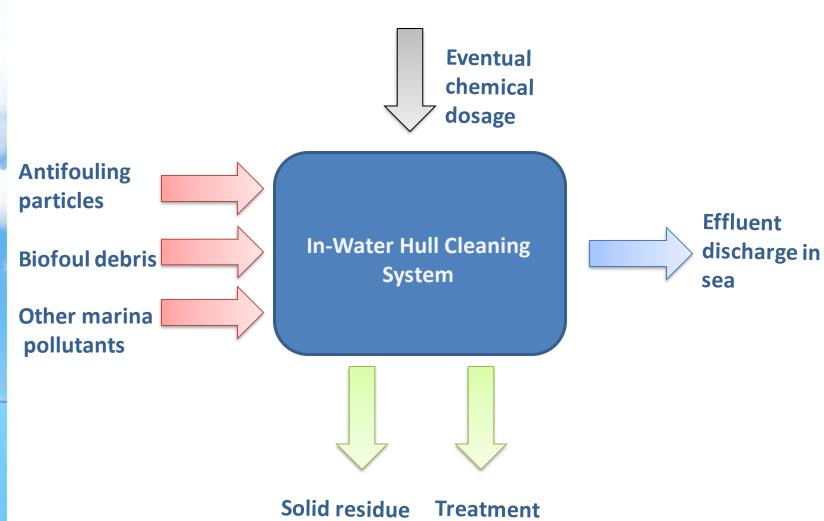
- Accumulation in sediments and biota
- Water pollution enclosed harbours and marinas
- Invasion of non-indigenous species

CLEANING AND DEBRIS CAPTURE

Environmental concerns:

- Capture debris efficiency
- Monitoring of surrounding water quality and debris loss

Technical concerns:


Biofouling characterization and removal efficiency

Monitoring of coating surface and potential

damage

TREATMENT AND DISPOSAL

from filtration

sludge

TREATMENT AND DISPOSAL

Key aspect of the treatment and removal of pollutants from water:

- Discharge standards and removal efficiency
- Targeted and specialized for fouling and AFP type or adaptable
- Energy consumption and chemical dosage for environmental compliance
- Waste classification according to the EWC
- Characterization of waste flows for a correct disposal favouring the Environmental and Circular Economy frameworks
- Cost and feasibility

TecHullClean (Spain +international partners)

Approved by AFP companies like Jotun (Norway) for ships and large vessels

- Semi-Hybrid moving systems for hull and niche areas
- Rotating brushes
- Progressive filtration

Current status: Active in +7 ports

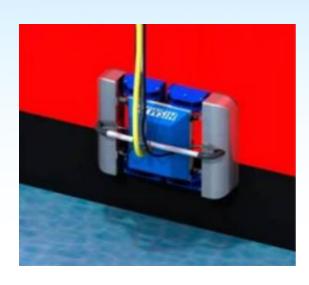
KeelCrab and UltraCrab (Italy)

- ROVs for small boats
- Rotating brushes or ultrasound
- Small nylon container for debris capture, no water treatmeny

Current status: Commericially available and customizable

Envirocart (Australia)

Award-winning


- Diver-driven
- Rotating brushes or blades
- Can treat various AFPs
- Filtration + UV

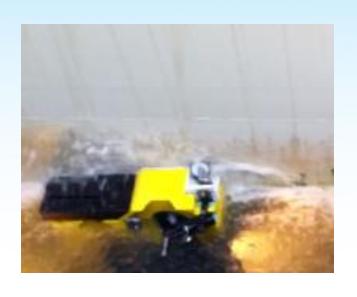
Current status: Active

Whale Shark and Beluga propeller (Canada)

- ROV
- Filtration

Current status: Active in the port of Vancouver

ECOStation (Norway) Award-winning for ships and large vessels

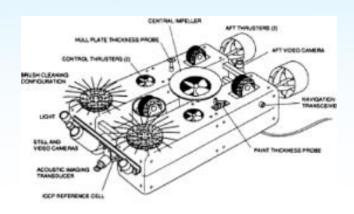

- ROV
- Rotating brushes
- Filtration + UV sterilization

Current status: Active

HISMAR (Public-private European partnership)
For ships and large vessels

- Water jets
- Filtration

Current status: unknown



US Navy's AHMV and AHCS (USA)

- ROV
- Filtration

MARAD (USA)

- Diver-driven
- Rotating brushes
- Progressive filtration +
 Organoclay adsorption
 Current status: Ongoing
 Testing results not compatible
 with discharge standards and
 hull protection

KEY TECHNICAL AND SCIENTIFIC ASPECTS FOR FURTHER STEPS

Policies and technical standards:

- Complex systems need an integrated risk assessment (biosecurity, fate and ecotoxicology) and evaluation.
- Standards, evaluation procedures and criteria are missing.

The leading countries in these matters are USA, NZ, AUS, NOR, SWE, DEN and NED.

KEY TECHNICAL AND SCIENTIFIC ASPECTS FOR FURTHER STEPS

Research

Valid and complete data are missing so further research initiatives are required:

- •Involving of stakeholders; IWC operators, producers, boat owners, scientists and policymakers.
- •Tests of different types of treatments, cleaning and capture units.
- Testing in real environmental conditions.
- Developing of BMP and BTA.

THANK YOU FOR YOUR ATTENTION

