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I. Introduction

In these lectures we will focus our attention on a solitary surface wave traveling 

in one direction along a channel. The wavelength will be much larger than the 

depth of the channel, therefore a shallow water theory will here be applied in 

developing the Korteweg-de Vries (KdV) equation. The nonlinear effects of 

short waves (Stokes waves) will not be described here. However, the reader will 

have the basic equations from which the nonlinear corrections for waves of 

small amplitude (with respect to wavelength) on deep water can also be 

obtained. Eagleson al. (1966) gave a simple view of the ranges of different wave 

theories. To gain a better understanding of dynamics of a solitary wave another 

approach, which is used more often in nonlinear problems of hydraulics will 

also be followed. The lecture will finish with a brief discussion of internal 

solitary waves.

II. Governing equations
 

The law of conservation of mass of a fluid is the equation of continuity: 

( ) 0.tρ ρ+ ∇ =u  

We will suppose an incompressible fluid in which the density ρ is 

constant.Therefore the equation of continuity is replaced by the equation for 

volume conservation (incompressible fluid): 

0.∇ =u  (2.1) 
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We will also suppose that the effect of friction is negligible. The only body force 

acting on a fluid is the gravity. We shall presume that the time-scale of motion 

(the period) is much shorter than the period of Earth rotation, so that the Coriolis 

force will also be ignored. The motion of the fluid is therefore described by the 

Euler equation: 

( ) ,t
p g

ρ
∇+ ⋅ = − −u u u k (2.2) 

In (2.1) and (2.2) the velocity u and pressure p are the unknown variables, g is 

the gravity acceleration and k is the unit vector in positive (upward) z direction. 

The ∇ × operator on (2.2) gives equation for vorticity ω 

( ) ( ) ,t
D
Dt

+ ⋅ ≡ = ⋅ωω u ω ω u  

which means that the vorticity is conserved following the fluid particle, if its 

initial vorticity was zero. Before the fluid was disturbed its velocity was zero. 

After the initialization of disturbance the vorticity will remain zero far from the 

boundary layers around the body which generated it. We shall take the motion to 

be irrotational 

,0ω=  (2.3) 

as it is in many problems of water waves. This means that the velocity potential 

φ may be introduced 

φ= ∇u  (2.4) 
and the continuity equation (2.1) transforms into the Laplace equation for the 

potential 
2 0.φ∇ =  (2.5) 
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The advective term in Euler equation (2.2) can be expressed with the vorticity 

through the vector identity ( ) ( )⋅∇ = × + ∇⋅ ⋅u u ω v u u . When we introduce the 

potential with (2.4), the equation of motion becomes 

( )2

0.
2t

p gzφ
φ

ρ
 
 
  

∇
∇ + + + =  

Integration of this equation with respect to the space variables gives 

( ) ( )
2

2
.t

p gz tCφ
φ

ρ
∇

+ + + =  

The constant C is a function of time and is determined by the pressure imposed 

at the boundary (the surface) of the fluid in motion. Any function of time alone 

may be added to the potential φ to have the same velocity field, or we may take 

C(t) = 0 without loss of generality. Therefore: 

( )2

2
0.t

p gz
φ

φ
ρ

∇
+ + + =  (2.6) 

The Bernoulli equation (2.6) and Laplace equation (2.5) describe the velocity 

and pressure field for unsteady irrotational motions in the fluid. 

III. Boundary conditions 

Boundary conditions represent a problem in theories of waves of finite

amplitude since they are also imposed on an unknown free surface of fluid. We

shall begin with the kinematic boundary condition at the free surface, which has

an elevation η(x, t) (Fig. 1) above the mean-zero level, varying along the

channel axis x. The particle at the free surface will remain on it (unless the wave

breaks), meaning that if we follow the particle at the surface, its vertical

displacement z = η will remain unchanged:
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( ) 0.
D z

Dt
η−

=  

Since the flow is irrotational, we replace the velocity components (u, w) in the 

above expression with the potential at the free surface. Since Dz/Dt = w, we 

obtain for the kinematic condition at the free surface: 

0; .t x x z zη φ η φ η+ − = =  (3.1) 

The Bernoulli equation (2.6) holds also at the fluid surface, where we shall 

ignore the effect of surface tension (waves are supposed to have a wavelength 

larger than 0.1 m). The pressure just below the surface is then equal to the 

atmospheric pressure above it. The atmospheric pressure over the fluid surface is 

assumed to be constant (zero). The dynamic boundary condition therefore yields 

( )2

2
0; .t

p g z
φ

φ η
ρ

η
∇

+ + + = =  (3.2) 

At the channel floor (z = -H(x)) the horizontal velocity component does not 

vanish in inviscid fluid, and the advected fluid particles near the sloping bottom 

also have a vertical velocity component. The boundary condition at the channel 

bottom is similar to the condition (3.1): 

( )0; .x x z xH z Hφ φ+ = = −  (3.3) 
Over the flat bottom the condition simplifies into the form 

0; .z z Hφ = = −  (3.4) 
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IV. Linear wave theory 

We shall examine when the nonlinear boundary conditions (3.1) and (3.2) at the 

free surface could be linearized. Let a be the amplitude of a wave and τ the 

period in which the fluid particles travel a distance of the order a in a wave of 

wavelength  λ. The water is supposed to be deep enough, therefore the velocity 

scale of fluid particles u is of the order a/τ. If the advective term in Euler 

equation (2.2) is much smaller than the local acceleration term, then: 

2

2 2 ,a a
λτ τ

  

or 

.a λ  (4.1) 

The slope of the surface, which is of the order a/λ << 1, is gentle. Since λ = cτ, 

where c is the phase speed of wave propagation, and a ≅ uτ, the condition (4.1) 

also means that u << c, or 

1,F  (4.2) 

where F = u/c is the Froude number, which plays an important role in 

determination of hydraulic regimes of the flow in a channel. The condition (4.1) 

is sufficient for the linearization of boundary conditions (3.1) and (3.2), which 

now take the form: 

0;t z zη φ η− = =  (4.3) 
and 

0; .t g zφ η η+ = =  (4.4) 
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This, however, is not enough. We still have the boundary conditions at the 

unknown free surface. On expanding the derivatives φt and φz in the Taylor 

series around z = 0 it becomes evident that the derivatives of φ could be taken at 

the level of undisturbed free surface z = 0, when a << λ. The surface boundary 

conditions now follow as 

0; 0t z zη φ− = =  (4.5) 
0; 0.t g zφ η+ = =  (4.6) 

A condition different from (4.1) becomes important for the linearization of the 

problem if we are concerned only with long waves traveling in a shallow 

channel, when H << λ. Now the vertical velocity w is estimated again with a/τ, 

while the estimate of the horizontal velocity component follows from the 

continuity equation (2.1), which yields u ≅ (aλ)/(τH). The condition of 

linearization (4.1) is replaced with the condition 

,a H  (4.7) 

which is also sufficient for the replacements of derivatives of φ at the free 

surface with the ones at fixed level z = 0. 

At the fiat channel bottom the condition remains unchanged 

0; .z z Hφ = = −  (4.8) 

The solution of Laplace equation for potential 
2 0φ∇ =  (4.9) 

with boundary conditions (4.5), (4.6) and (4.8) can be found in textbooks of 

fluid dynamics, like Paterson (1983) and Acheson (1990) . We shall just 

mention that when the surface is supposed to be in a form of a traveling wave 
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( )cosa kx tη ω= −  (4.10) 

the velocity potential is obtained from (4.9) by considering the kinematic 

boundary conditions at the channel bottom (4.8), and at the free surface(4.5): 

( )
( ) ( )cosh

,
sinh

sink z Ha
k kH

kx tωφ ω
+

= −  (4.11) 

( )
( ) ( )cosh

cos ,
sinh

k z H
a

kH
u kx tω ω

+
= −  (4.12) 

( )
( ) ( )sinh

sin .
sinh

k z H
a

kH
w kx tω ω

+
= −  (4.13) 

Finally, the dynamic boundary condition (4.6) gives us the dispersion relation: 

( ).tanhgk kHω =  (4.14) 
The phase velocity 

( )tanhg
k

c kH= (4.15) 

differs from the group velocity 

( ) ( )
( ) ( ) ( )2

sinh cosh 2 ( )1 .
2 sinh 2 ( )2cosh tanh

g

kH kh kHg c k H
k k HkH kH

c ω
ω

+     = + 
 

=  (4.16) 

The linear theory covers surface waves on deep water as well as on shallow 

water. For deep water (H >>λ.) the amplitude of the vertical velocity component 

is equal to the amplitude of the horizontal velocity component, they both 

decrease exponentialy with depth (like ekz; Fig. 2). The fluid particle paths are 

then almost circular (Stokes' drift is still present). The dispersion ( c = 2cg = 

(g/k)0.5) spreads the packet of these short waves. 
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We shall be more oriented towards long waves, when H << λ or when kH << 1. 

The linear long waves are nondispersive 

.gc c gH= =  (4.17) 

The velocity potential is approximated with 

( )2 sin ,a
k H

kx tωφ ω= −  (4.18) 

The amplitude of the horizontal velocity component does not decrease with 

depth, so 

( )cos ,a
kH

u kx tω ω= −  (4.19) 

while the amplitude of the vertical velocity component decreases linearly 

towards the bottom 

( )1 sin .za
H

w kx tω ω + 
 

= −  (4.20) 

It could also be shown from the linearized Euler equation (2.2) that the pressure 

changes with depth hydrostatically. 

At the end the linear wave equation has to be written. From the kinematic 

boundary condition at the free surface (4.5) it follows: 

0,xt Huη + =  (4.21) 
where the vertical velocity component φz (=w) was expressed with the horizontal 

velocity component by the integration of (2.1) with respect to z from z = -H to z 

= 0 (ux is depth independent). We derivate the dynamic boundary condition at 

the surface (4.6) with respect to x to obtain 

0xtu gη+ =  (4.22) 
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Both boundary conditions at the free surface, (4.21) and (4.22) give the wave 

equations: 
2 20; 0.tt xx tt xxu c u u c u− = − =  (4.23) 

V. Nonlinear shallow water equations

In the previous section the following  ratios were introduced: 

2

2, ,a H
H L

ε δ= =  (5.1) 

where a is the wave amplitude, L(= λ) the horizontal length scale, and H the 

vertical length scale. The ratios must be small for the linearized theory to be 

applied . In order to develop the nonlinear shallow water equations, it is 

convenient to introduce the nondimensional flow variables: 

, , ,x z ctx z t
L H a L

ηη∗ ∗ ∗ ∗= = = = (5.2) 

where c (=(gH)0.5) is the phase speed on a shallow water (4.17). By inserting 

(5.2) in dynamic boundary condition (3.2) at the free surface we obtain the 

dimensionless velocity potential φ* as: 

.H
caL

φ φ∗ =  (5.3) 

The basic equations for water waves in a channel with a flat bottom (2.5), (3.1), 

(3.2), and (3.4) can be expressed in the nondimensional form: 

0,xx zzδφ φ+ =  (5.4) 
0, ,t x x z zδ η εη φ φ εη  + − = =  (5.5) 
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2 2

2 2
0; ,x zt zε εφ φ φ η

δ
εη++ + = =  (5.6) 

0, 1,z zφ = = −  (5.7) 

where the asterisks were dropped for simplicity. At this step we could also be 

interested in short waves, for which δ ≥ 1. Then we would look for the solution 

in the form of a series of ε, which would lead to the Stokes wave. Instead, we 

follow Debnath (1994) and seek for a solution of (5.4)-(5.7) for shallow water  

(δ << 1) in a form 
2

0 1 2 ...φ φ δφ δ φ= + + +  (5.8) 

Substitution of φ from (5.8) in the Laplace equation (5.4) gives to zero order 

0 0.zzφ =  (5.9)
We integrate (5.9) with respect to z from the bottom z = -1, where the boundary 

condition (5.7) holds. This implies the integration constant zero, and to zero 

order the vertical velocity φ0z = 0 for every z ∈ (-1, εδ). Therefore, the potential 

φ0(x, t) is independent of the vertical coordinate z. We shall denote 

( )0 .,x u x tφ =  (5.10) 

Laplace equation (5.4) to first and second order is 

1 0 ,xzz xx uφ φ= − = − (5.11) 
2 1 ,zz xxφ φ= −  (5.12) 

from which upon two subsequent integrations with respect to z and 

consideration of (5.7) we obtain first-order and second-order corrections to φ 
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( )2
1 1 ,

2
xu zφ = − +  (5.13) 

( )4
2 .1

24
xxxu zφ = +  (5.14) 

First and second order terms reveal that the series (5.8) is a power series of φ in 

even powers of (z + 1) about its value at the bottom φ0: 

( ) ( )2 4
2

0

1 1
...

2 2
x xxxu z u z

φ φ δ δ
+ +

= − + +  (5.15) 

This series makes sense since for shallow water waves the orbits of fluid 

particles are horizontaly elongated and the vertical velocity component φz is 

small. 

We will suppose now that δ and ε are of the same order of magnitude. The 

kinematic boundary condition (5.5) at the surface can be written in a form which 

includes terms up to order δε, δ 2 and ε 2 

( )
2

6
1 xxxt x x uu u δδ η ε η εη  + + + =  (5.16) 

and the dynamic boundary condition by retaining terms up to order ε and δ 

2
0 0.

2 2xtt u uδ εφ η− + + =  (5.17) 

We derivate (5.16) with respect to x and simplify (5.17) to obtain 

( )1
6t xxxx

u uδη εη 
 + + = (5.18) 

0.2x xt txxuuu uε η δ+ − =+ (5.19) 

The pair of equations (5.18)-(5.19) is accurate to the second order and is known 

as the Boussinesq system of equations for shallow water. By ignoring terms with 
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ε and δ we get the system of zero order: 

0,
0

x

x

t

t u
u η
η

=
=

+
+

which leads to the dimensionless wave equations 

0; 0,tt xx tt xxu u η η− = − = (5.20) 

with dimensionless phase speed c = l. Their dimensional form is (4.23). Eqs. 
(5.20) describe the long wave without any dispersion.  

In zero order u is linearily proportional to η, as follows from (5.20). Con-
sequently, we seek for the solution of (5.18)-(5.19) in a form 

,u P Qη ε δ= + +  (5.21) 

where P and Q are unknown functions of η. This transforms the system (5.18)-
(5.19) up to order δ  and ε 

( )2
6

0,x x x
xxx

t x P Qηη δ ηη η ε  + + − 
 

+ + = (5.22) 

( ) 2
0.t x t

txx
t x P Qηη δ ηη η ε  + + − 

 
+ + = (5.23) 

For the zero order 

t xη η= −  (5.24) 

Subtraction of (5.23) from (5.22) gives 

( ) 2 6
0.t x x t x

txx xxxP P Q Qηη δ η ηε  − − + − − + 
 

= (5.25) 
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Parameters δ  and ε are supposed to be of the same order, but they are not equal. 
Since (5.22) and (5.23) should represent the same equation up to first order of δ  
and ε, the terms in parentheses have to vanish1. This happens if 

2
,

4 3
xxP Q ηη= − = (5.26) 

The velocity is then expressed with the elevation as: 

2

4 4
xxu ηηη ε δ= − + (5.27) 

and (5.22), or (5.23) becomes 

3 1
2 6

0.x xxxxt ηη δηη η ε ++ + = (5.28) 

This is the Korteweg-de Vries (KdV) equation, named after the authors who 
derived it in 1895. It was obtained with the assumption that ε/δ = aL2/H3 ∼ 1. 
The dimensional equivalent of KdV is: 

2

1 3
2 6

0.xxxxt H
cHc ηη η η + 

 
++ = (5.29) 

t xThe first two terms η + cη represent the wave evolution at the speed c = (gH)1/2 
in shallow water. The third, nonlinear term, is responsible for a wave steepening 
( change in amplitude), while the fourth, linear term describes the frequency 
dispersion. The balance between these effects gives also a solitary wave. If the 
undisturbed depth of the channel H is increased, the nonlinear steepening term is 
reduced and the dispersive term is enlarged. 

VI. Solitary wave in a channel

Let the elevation η be in the form of a progressive disturbance η  = G(ϕ), where 
ϕ = x − Ut. The speed of propagation U is yet unknown. We require 

1 This derivation was not written in the original text. Introduce new variable u = x-t, then Px = 
Pu, Pt = − Pu, the same holds for Q and η.  The vanishing term in (5.25) in parenthesis next to 
ε: Pt - Px - ηηx = 0 becomes -2Pu = (η2/2)u, from where P in (5.26) follows. Similarly the 
vanishing factor next to δ in (5.25) Qt −  Qx −  ηtxx/2 + ηxxx/6 = 0 becomes 2Qu = (2ηxx/3)u, 
from where Q in (5.25) follows. 
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that when |ϕ| ∞, η   0, and this holds also for G' = Gϕ and G". The 

KdV (5.29) equation becomes 

( )
23 0.

2 6
c cHG c U GG G
H

− + + =′ ′ ′′′  (6.1) 

Integration of (6.1) with respect to ϕ gives 

( ) 2
23 .

4 6
c cHG c U G G C
H

− + + =′′  (6.2) 

Since G and its derivatives have to vanish for large ϕ, the constant C = 0. We 
multiply (6.2) with 2G' and integrate again 

( )2 2 3
2

0,
6 2

cH cG c U G G
H

+ − + =′  (6.3) 

where the second integration constant was set to zero again because of the 
boundary conditions at infinity. Rewritten in another form (6.3) looks like 

( )
2

2
3

3 ,dG G a G
d Hϕ

 
 
 

= − (6.4) 

where the parameter a = 2H(U/c - 1) has been introduced. The solutions of the 
equations of the form 

( ) ( )2
 cubic in dG d Gϕ ϕ=  (6.5) 

are in terms of elliptic functions, like cn(αϕ) and sn(αϕ), where α is related to 
the elliptic integral, and the waves are therefore called cnoidal waves. The two 
integration constants, which we have lost in  racing the solitary wave, would be 
nonzero, and the solution would be periodic. In our case the solution of (6.4) 
consists of a solitary wave (Fig. 3): 

( )2
3

3sech , .
4

aG a b b
H

ϕ= = (6.6) 



The solitary wave (called also the soliton) was first observed experimentally by 
John Scott Russell on the Edinburg-Glasgow Canal in 1834. The velocity of 
propagation is related to the amplitude of the wave: 

1 .
2
aU c
H

 
 
 

= +  (6.7) 

This expression for the velocity of propagation could also be obtained from the 
approximation of (g a + H ) to the first order in ε = a/H. This was also 

discovered by Russell in laboratory experiments. Taller solitary waves travel 
faster than the shorter ones. Two solitons of different amplitude collide, if the 
taller one moves behind the shorter one (Fig. 4). It can be shown that after the 
collision, according to the KdV equation, their shape reappears the same as 
before the collision and the taller soliton moves away from the shorter one.  

We can establish an appropriate extent of a soliton by looking for the value 
of argument bϕ at which the elevation η = a/10. This occurs when bϕ = 
±1.8183. lf h = 20 m, and a = 2 m, then the wave has a length of around 133 m. 

VII. Solitary wave in hydraulics

The approach which has been followed so far in obtaining the solitary wave 
is described in similar form by Debnath (1994), Dodd et al. (1982), and by 
LeBlond and Mysak (1978) and is grounded on the derivation of the KdV 
equation. Another, simpler approach also gives the solitary wave as a result of 
dynamics in shallow water and is described in textbooks of hydrodynamics (i.e. 
Paterson (1983) and Acheson (1990)), where the problem of hydraulic jumps 
(tidal bores) and shock waves is considered. Another simplified approach is 
followed by Defant (1961) directly from the vertical integration of Euler (2.2)  

15 
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and continuity (2.1) equations where the bottom boundary condition (3.4) was 
considered.  

Paterson (1983) supposed an irrotational two-dimensional steady flow where 
the disturbance has been followed while it moves. The stream function ψ(x, z) 
for this flow may be introduced: 

,z xu wψ ψ= = −  (7.1) 
The channel bottom is the streamline ψ(x, 0) = 0, and so is the free surface, 

where ψ(x, h(x) = Q; the constant Q is the total volume flow rate (Fig. 5). The 
streamline at the free surface can be expanded in a Taylor series in powers of z 
around the value at the bottom. The cross-channel vorticity component ωy = uz - 
wx = ψzz + ψxx = 0 for irrotational flows and we have to solve the Laplace 
equation for the stream function. The Taylor series of stream function, which 
satisfies the Laplace equation and fulfils the bottom boundary condition, follows 
as: 

( ) ( ) ( )
3

, ,0 ,0 .
6 xx
zx z zu x u xψ = − (7.2) 

The Bernoulli equation(2.6) for a steady and irrotational flow may be written in 
the form: 

( )2 2 .
2

p u w gz Aρ ρ+ + + = (7.3) 

where A is a constant. The rate of momentum flux is balanced with the pressure 
force, when friction is ignored: 

( )2

0
.

h

z
p u dz Bρ

=

+ =∫  (7.4) 

This integral constraint with constant B allows the elimination of pressure in 
(7.3), which in vertically integrated form becomes: 
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2 2

0
.

2 2

h

z
dzu wB A gz ρ ρρ

=

 
  
 

= − + −∫ (7.5) 

The velocity components (u, w) follow from the stream function (7.2), and the 
integration of (7.5) gives B to third order in h: 

2 3 3 2
2

2 2 3 6
gh h uu h uB Ah u hρ ρ ρ 

  
 

′′ ′≅ − + − −  (7.6) 

The velocity u is the velocity at the channel bottom. Since the stream function 
(7.2) is constant (Q) at the surface, the slip velocity along the bottom can be 
expressed in terms of Q. The approximation u(x, 0) ≅ Q/h(x) is sufficient to 
obtain: 

( )2222
.

2 2 6
Q hgh QB Ah

h h
ρρ ρ ′

≅ − + −  (7.7) 

This is the differential equation for the height of the water column in a channel 
which could be rewritten in the form of (6.5), which gives the cnoidal and 
solitary waves.  

The left-hand side of (6.4) implies that the right-hand side has to be positive or 
zero. Since from (6.6) it follows that G ≥ a, a has to be positive (a "negative" 
hump cannot be a solution at the fluid surface). From (6.7) it follows that this is 
achieved if: 

1.UF
c

= > (7.8) 

The solitary wave happens only in a supercritical flow. In a laboratory, a soliton 
can be produced by moving a piston along an elongated container. If the piston, 
however, moves too fast, the resulting length of disturbance is too short and the 
amplitude is high, which leads to the hydraulic jump (bore) rather than a solitary 
wave. This happens when ε/δ = aL/H 3 > 16. The non-linear steepening wins 
against the dispersion. It has to be mentioned that it is not necessary that all of  



1

2

1 2

1 2

the kinetic energy of a disturbance is transformed into a random local motion on 
a small scale, but that also a packet of cnoidal waves may emanate from the 
bore, forming an "undular" bore. 

VIII. Conclusion

These lecture notes are meant to be an introduction into the field of nonlinear 

waves. For this reason only the surface waves in a flat-bottomed channel were 

considered. The solitary waves were also found in a stratified fluid as internal 

nonlinear waves. The flow is no more irrotational (∇ρ ×∇p/ρ 2 is the rate of 

vorticity changes), and the conservation of density Dρ/Dt = 0 of fluid particle 

has to be considered, if neither compression nor diffusion takes place. Nonlinear 

internal waves are described in LeBlond and Mysak (1978). The theory 

simplifies when the rigid lid is presumed to be at the free surface and the 

stratification is simple (Fig. 6). In a two layer fluid a solitary wave at an 

interface of two fluids may be one of elevation or depression. Let h1 and ρ 

denote the thickness and density of an upper layer, and h2 and ρ are the 

thickness and density of a lower layer. If (h1/h2)2 > ρ /ρ , then the solitary wave 

will be one of elevation, while if the opposite happens, the soliton will be one of 

depression. If (h1/h2)2 = ρ /ρ , then no solitary wave may be generated. The 

conditions for these cases were discussed by Thorpe (1968).
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FIGURES 

 

Fig. l. The sketch of wave geometry in a channel. 

 

Fig.2. The linear solution of waves. a) Deep water, b) Intermedium depth, c) 

Shallow water. 

 

Fig.3. A solitary wave. 

 

Fig.4. Collision of two solitary waves. A taller solitary wave catches up the 

shorter one, they interact nonlinearly according to the KdV equation, and the 

taller soliton passes away from the shorter one. 

 

Fig. 5. Sketch for the hydraulic approach to solitary wave in a channel. 

 

Fig. 6. Forms of internal waves (redrawn after Thorpe, 1968). 
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